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We propose a multiscale chemo-mechanical model of the cancer tumor development in the epithelial tissue. The epithelium
is represented by an elastic 2D array of polygonal cells with its own gene regulation dynamics. The cell morphology was calibrated
in the model based on the experimental data. The model allows for the simulation of the evolution of multiple cells interacting via
the chemical signaling or mechanically induced strain. The used algorithm takes into account the division and intercalation of
cells, as well as the transition of normal cells into a cancerous state triggered by a local failure of spatial synchronization of cellular
rhythms driven by transcription/translation processes. Both deterministic and stochastic descriptions of the system are given for
chemical signaling. The simulations reproduce a distinct behavior of invasive and localized carcinoma. Generally, the model is
designed in such a way that it can be readily adjusted to take into account any newly understood gene regulation processes or
feedback mechanisms affecting chemo-mechanical properties of cells.

Keywords: cancer modeling, signaling, circadian rhythms, time-delay, systems biology

1. Introduction

Mathematical modeling of cancer has been growing im-
mensely as one of the challenges of mathematics and phys-
ics applied to biology and biochemistry. The principal diffi-
culty in modeling of cancer (as, in fact, of any biological
system) is the multiscale nature of the phenomenon [1].
One can identify at least three natural scales, with different
stages of the disease development. Processes on the cellu-
lar scale are triggered by signals stemming from the subcel-
lular level and have an impact on the macroscopic scale,
i.e. on the organism as a whole, when tumor grows and
spreads [2].

At the cellular scale, a system of coupled ODEs (Ordi-
nary Differential Equations) can be used to model large cell
populations, where each variable corresponds to a well-
defined biological property characteristic of all cells of the
same population. This approach has been further devel-
oped to account for more fine effects (see, for example, re-
view paper [3]). The advantage of this approach is that the
models are easily tractable, and enable a relatively fast iden-
tification of the parameters. On the downside, however, the
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models do not account for potentially important phenom-
ena, such as spatial aspects and heterogeneity among cells.
Another type of modelling, supplementing the population
dynamics with additional variables determining the aver-
age structure of a population of cancer cells (for example,
the age of cells), can be assihned to the class of semi-phe-
nomenological models with internal structure [4].

A large body of literature has been devoted to models
linking the cellular scale to the macroscopic tissue scale [2].
Most commonly, the tumor is considered as a continuous
medium.

It is described by a system of partial differential equa-
tions including the mass balance equation for the cellular
medium and reaction-diffusion equations describing the field
of chemical signals exchanged between cells. For example,
the tumor may be viewed as a porous matrix [5] which inter-
acts with a filling liquid (healthy cells). In a very recent
work of this kind [6], the tumor was represented as a
multiphase medium simulated in a 3D geometry by the finite
elements method. The disadvantage of such models is their
inherently phenomenological character.

An alternative approach is cell-based discrete model-
ing. Unlike continuum models, discrete models have the
ability to track the behaviour of individual cells. Due to
advances in biotechnologies, there is an increasing amount
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of experimental data available at a single cell level that can
be used for improving the mathematical models. Early mod-
els including single cell data were based on cellular au-
tomata or random walk of cells. A large number of models
combining interactions at sub-cellular and cellular level have
been reported [2]. The small number of reactant molecules
involved in gene regulation can lead to significant fluctua-
tions in intracellular mRNA and protein concentrations and
the consequences of such noise at the regulatory level have
been analyzed in numerous recent studies [7]. Consider-
able experimental evidence exists that stochasticity plays
major role in gene regulation, both due to intrinsic and ex-
trinsic factors. There are several different approaches to
modeling of stochastic chemical reactions: direct Gillespie
simulations [8], exact master equation analysis and simpli-
fied descriptions based on the Langevin equation [7]. In
addition, the transcriptional and translational processes are
known to be compound multistage reactions involving the
sequential assembly of long molecules. This can provoke a
time lag in gene regulation processes. The combined effect
of time delay and intrinsic noise on the temporal dynamics
was explored in [9, 10].

The multiscale nature of cancer requires mathematical
modeling approaches that encompass different biological
scales. Due to the complexity of such approaches the num-
ber of literature reports is limited. One of the first attempts
to implement a hybrid approach included a model of cellular
automata whose state is determined by a continuous distri-
bution of oxygen around a blood vessel near the origin of
the tumor [11]. In another remarkable work [12], a spheri-
cally growing tumor within the framework of a lattice model
of mechanically interacting discrete cells was examined. A
dynamic system describing the processes of gene regula-
tion has been applied separately to each cell in the popula-
tion. Another multiscale chemo-mechanical model of can-
cer tumor development in an epithelial tissue has been re-

cently proposed in [13, 14]. The model is based on transi-
tion of normal cells into the cancerous state triggered by a
local failure of spatial synchronization of the circadian
rhythm. A good review of recent developments in multiscale
cancer modeling can be found in [1].

In the present paper we discuss the main principles of
the tumor growth modeling within a cell-based mechanical
model of deformations and rearrangement of epithelial tis-
sue coupled with the transcriptional regulations and inter-
cellular signaling earlier developed in [13-9]. The main hy-
pothesis is that tumor formation is driven by disruption of
the circadian rhythm in the epithelial tissue. Circadian
rhythms are common to almost all living organisms. The
timing of circadian clocks is established in a cell-autono-
mous manner by a self-sustaining molecular oscillator that
includes intertwined negative and positive transcription/
translation-based feedback loops. It has been recognized
in recent years that core circadian genes are important in
tissue homeostasis and tumorigenesis. Many studies have
shown (see, for example, [20, 21]) that disruption of the
circadian clock is implicated in gene deregulation leading to
the development of cancer and other diseases.

2. Model description
2.1. General Principles

Epithelium can be defined as a relatively avascular ag-
gregation of cells that are in apposition over a large part of
their surfaces, and are specialized for absorptive, secretory,
protective, or sensory activities. The cells of lining and
covering epithelium (as in the lining of intestine) are ar-
ranged in sheets whereas glandular epithelium consists of
complex aggregates of epithelium cells. We focus on the
first type, and construct a 2D model of a single layer of
epithelial cells. Different shapes can be distinguished in
microscopic sections, but the distinctions are often blurred.
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Fig. 1. (a) — Photomicrograph of the papillary thyroid carcinoma demonstrating nuclear overlapping, (b) — Photomicrograph
of the Pap test smear showing the presence of cervical cancer cell (a larger nucleus surrounded by normal cells). Both

micrographs were taken in the Perm State Clinical Hospital.
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The cells adhere to each other forming specialized attach-
ment structures (desmosomes) that ensure coherence and
strength of tissue. We will further concentrate on the mod-
elling of carcinomas. Carcinoma is a type of cancer that
develops from epithelial cells when DNA is altered or dam-
aged to such an extent that the cells start to exhibit abnor-
mal malignant properties. It may affect skin, breast, lung,
prostate, and colon, and is among the most common types
of cancer in adults.

Figure 1 shows two different types of carcinoma cells
found in patients of Perm State Clinical Hospital. The first is
a papillary thyroid carcinoma which develops from epithe-
lial cells in the thyroid gland (also known as follicular cells),
responsible for the production and secretion of thyroid
hormones. Follicular cells are of the cuboidal type, and are
arranged in spherical follicles (Fig.1a). It can be seen that
large, crowded, overlapping and sometimes empty-looking
nuclei cells are the characteristic features of this carcinoma.
Another type of carcinoma cells is shown in Fig.1 (b) pre-
senting the Pap smear of a cervical cancer patient. The in-
vasive cervical carcinoma cells are mostly squamous; they
are relatively small in size and have large nuclei. This is in
contrast to normal epithelial cells (also shown in Fig.1 (b))
that are larger, almost rectangular in shape and have smaller
nuclei.

The following key features make our model suitable for
the realistic simulations of the epithelium:

— Cells change size and shape in the process of tissue
evolution.

— Tissue spreads by the mechanism of cell division.

— Individual cells move within the tissue by the mecha-
nism of intercalation.

— Neighboring epithelial cells exchange chemical sig-
nals through their common borders.

— Dynamics of signaling species take part in the regula-
tion of intracellular processes.

— Normal cells are able to transform into cancer cells.

— A new species of cells with its own set of physical and
mechanical properties.

The following properties of cancer cells are taken into
account:

— Cancer cell never undergo the reverse transition to
normal cells.

— Cancer cell exhibits a number of alterations on cell
surface in the cytoplasm and in their genes.

— Cancer cell show uncontrolled mitotic divisions caus-
ing disorganized growth.

— A tumor can be formed due to uncontrolled growth
and division of cancer cells.

— Cancer cells are far less adhesive than the normal cells,
and therefore tend to wander through tissues causing can-
cerous growth in different parts of the body.

In order to obtain a realistic description of the epithe-
lium that reproduces the irregular stressand velocity dis-
tributiion, we developed a cell-based model combining ba-
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Fig. 2. Principal components of the model and their interre-
lation.

sic mechanical and reaction-diffusion processes. The main
components of our model are mechanical, involving elastic
interactions between cells and their spreading, and genetic,
involving cell transformation and signalling influenced by
circadian rhythms. Their relationships are schematically
presented in Fig. 2. Below we discuss each element of the
model in more detail.

2.2. Cell morphology

In order to calibrate the mathematical model, cytology
materials obtained from patients of Perm State Clinical Hos-
pital were examined. Distribution histograms of physical
parameters reflecting cancer and normal cell morphology—
characteristic size, perimeter and areca were obtained from a
large number of cell micrographs (see a representative ex-
ample in Fig. 1b). Figure 3 shows the distribution histo-
grams of normal (green) and cancerous (red) cells on the
perimeter. It can be seen that the cancer cells have a smaller
average size. This can be explained by an increased internal
pressure in a tumor that arises due to rapid cell division.

It is worth noting that our results obtained by direct
measurements of morphological parameters from photomi-
crographs are in good qualitative agreement with cell mor-
phology measurements performed using new sophisticated
optical techniques [22].

2.3. Chemo-mechanical cell-based model of epithelial
tissue

The mechanical model presents the epithelium as an
elastic two-dimensional array of cells, approximated by poly-
gons. We take as the initial configuration a regular hexago-
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Fig. 3. Distribution histograms of the normal and cancer
cells on the perimeter.
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nal lattice. In the course of spreading, division and trans-
formation, it becomes distorted and incorporates also poly-
gons with a different number of vertices. Controlled spread-
ing and deformation of epithelial layers, two-dimensional
sheets of cells that tightly adhere to one another, is a key
process in both adult and developing tissues. During em-
bryogenesis, spreading and folding of epithelia plays a cen-
tral role in gastrulation, an event that initiates the formation
of three-dimensional structures of tissues and organs, as
well as in the subsequent dorsal closure. Mechanisms of
collective cell migration are a subject of intensive research
[23]. The process is mediated by the intracellular actin ma-
chinery and proteins of adherent junctions, and is regu-
lated by complicated chemical pathways, that still remain
largely unexplored, and are influenced both by genetic and
extrinsic factors.

Epithelial tissue is a layer of cells covering the surface
of an organ or body. Thus, we use only quasi-two-dimen-
sional system in modeling the epithelium behavior, that
makes the calculation easier [13—16]. The cells always re-
main attached to each other forming a continuous two- di-
mensional epithelial surface. The curvature of the layer is
presumed here to be small compared to the cell size and can
be neglected (a more complicated case of the deformed lay-
ers of cells has been considered recently in [18]).

The mechanical model is based on the elastic potential
energy U of the tissue:

=13 P e -4y n

cells
where P and A4 stand for the perimeter and area of cell re-
spectively. Here the coefficient u characterises the effect of
contractile forces within the perimeter of the cell, ) charac-
terizes the elastic resistance to stretching or compressing
the cell with respect to the reference cell area A4,. The ver-
tices of the polygons representing cells form a lattice. Evo-
lution of the tissue occurs by moving the lattice nodes. We
define the mechanical force acting on any jh node as

oU

F =Y
J BR ’ (2)

J
where R denote the position of the node.

We consider the internal movement of cells in the tissue
as a strongly overdamped process, so the equation of mo-
tion for i-th node can be written as

1

V=S KRH(R | -F), ®

where V, is the velocity, K is the mobility coefficient, H is
the Heav1s1de function. The threshold force F, has been
introduced in (3) to take into account the situation when
the node remains immobile even if force is not zero.

An important feature of the model is the ability of cells
to divide. This allows the tissue to carry out internal move-
ment through the redistribution of internal stresses in the
environment. It is assumed that the division occurs when
the longest edge of the polygon and its corresponding op-
posite edge are divided in half (Fig. 4a). In order to minimize
the growing disorder in the distribution of nodes in the
process of cell division, the probability to divide was con-
nected to the number of vertices of the polygon n accord-
ing to the following formula [16]:

Py = Foq i Q)
where ¢ is a distribution constant and £ is a scaling factor.
One can see that for ¢ > 1, the polygons with a number of
sides over 6 experience the division more frequently. Thus,
the most likely shape of the cell according to (4) is a hexa-
gon. For cancer cells, the dependence of the number of
nodes is suspended and the division rate is set at consider-
ably higher level.

Another mechanism which increases the liquidity of the
tissue and excludes the severe deformation of some cells is
intercalation [13, 16]. We introduce here a special parameter
lo which determines the moment when the intercalation can
occur. Then the probability of the event can be written in
the simple form:

L <l,
By = ®)
0, [, =21,.

One can see from (5) that if the length of the border
separating two cells becomes less than /0, it is substituted
by a link of a slightly larger length in the normal direction
(Fig. 4b). The intercalation is known to be important in many
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Fig. 4. Elements of chemo-mechanical model of epithelium: cell division (a); cell intercalation (b).
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tissue reshaping processes. Since cancer cells are far less
adhesive than normal cells, the respective [, is set at a
higher level, thereby making the intercalation of cancer cells
more probable. Altogether, Egs. (1)—(5) define the mechani-
cal dynamics of tissue on the cellular level.

2.4. Genetic model of circadian rhythms: single-gene
auto-repressor model with dimerization

The key feature of our genetic model is the influence of
periodic inputs. Biological rhythms are periodically re-
peated changes, which are quite characteristic for living
matter on every level of its hierarchy, starting from the mo-
lecular and subcellular levels and up to the biosphere as the
whole. In a living organism, thythms are closely connected
with their adaptation to the environment during the evolu-
tion. We concentrate here on circadian rhythms that syn-
chronize with daily changes of the environment. A remark-
able feature of these rhythms is that they are not simply a
response to the 24-hour environmental cycle imposed by
the Earth’s rotation, but are generated internally by cell-
autonomous biological clocks [24]. After decades of re-
search, the genetic mechanism of circadian oscillations has
been widely recognised as a core of this phenomenon. It
was realized that their mechanism works even on the scale
of one or several genes by revealing itself in RNA and pro-
tein fluctuations in transcription and translation processes.
As soon as transport proteins pass through the cell mem-
branes and trigger intracellular interactions, circadian oscil-
lations inevitably develop at the intercellular scale. At the
organism scale, the signals from separate cells should be
synchronised, thus developing unified rhythms for the
whole organism. For example, in mammals, it is believed that
a master pacemaker in the hypothalamus orchestrates tem-
poral alignment of behaviour and physiology by transmit-
ting daily signals to multiple clocks in peripheral tissues.
The molecular mechanisms of circadian rhythms for some
organisms are already well understood [25], but the studies
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largely concentrate on the temporal rather than spatial or-
ganization of rhythms.

Since there is extensive experimental evidence that gene
deregulation influenced by circadian clock is implicated in
the development of cancer [20, 21], the molecular mecha-
nism of the circadian rhythm disruption and its propagation
due to cell-to-cell signaling should become an essential
factor in transformation of cells (Fig. 2). We assume that a
normal cell can turn into a cancer cell due to a local disrup-
tion of the circadian rhythm in the peripheral epithelial tis-
sue. For this reason, the mathematical models of rapid syn-
chronization of the entire community of oscillators devel-
oped for SCN cells (see, for example, [26]), are not very
suitable for our purposes. Instead we apply a single-gene
auto-repressor model with dimerization where the negative
feedback loop is delayed in time as suggested in [9]. Time-
delay seems to be the most common cause of oscillations in
genetic systems, since gene regulation processes are typi-
cally very slow and comprise multistage biochemical reac-
tions engaging the sequential assembly of long molecules,
and therefore are likely to generate time delays.

Let us consider a single-gene protein synthesis with
negative auto-regulation (Fig. 5a). This is a popular motif in
genetic regulatory circuits, and its temporal dynamics has
been analyzed within both the deterministic and stochastic
framework [7]. The generalized version of this system tak-
ing into account that the production of the auto-repressor
protein takes a finite amount of the delay time has been
studied in [9, 10].

Suppose that protein can exist both in the form of mono-
mers X and dimers Y. The transitions between them with the
rates k., and k_, are

X+x—tusy v A sx4x, (6)

We assume also that the protein can be degraded with
the rate B and produced with the rate 4 respectively:
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Fig. 5. Network architecture of the molecular components of the circadian rhythm: a single-gene auto-repressor model with
time-delay where only x gene defines the oscillatory activity (a). X stands for the concentration of protein produced by x
gene; a typical time series obtained during single-cell simulation within deterministic description given by (9): the dynamics
of X protein with parameters T=8h, 4 =5000 nM/h, B=5.0 1/h,e=0.1 1/nM, 8=0.2 1/nM (b)
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The synthesis occurs at time 7 + T if the chemical state of
the promoter site of the x gene at time ¢ is unoccupied (Do).
Otherwise (D1), the production is blocked. The transitions
between the states occur with rates k,; and k_; during
binding and unbinding of some dimer are respectively

Dy+Y—*1 5D, D—* 5Dy +Y. ®)

In order to describe the intercellular signaling, we as-
sume that the X monomers can be transported via cells
membranes. Thus, Egs. (6)—(8) define the kinetics of gene
regulation both the single cell level and whole tissue level.

2.5. Genetic model of circadian rhythms: deterministic
description

The main approximation is that the reactions of dimer-
ization (6) and binding/ unbinding (8) are fast in compari-
son with production/degradation of protein (7). Thus, its
dynamics has to enter quickly into a local equilibrium and
we obtain

) _ 1 N
dt 1+dex ()| 1+edx(t-1)
AN 3 B (- 0)). )

Jeadj(i)

where the subscripts refer to cells, x stands for the concen-
tration of the free monomers of the X protein, o is the trans-
fer coefficient, N is the copy number, 3=k, ,/k_,,
€ =k,,/k_, and adj(i) stands for “adjacent to ith-cell”. We
assume for the simplicity that the same X protein transports
the circadian signal outside the cell. It is assumed that the
monomers of the X protein are transported diffusively from
one cell to the other, whereas its flux does not depend on
the distance between the two cells i and j but is propor-
tional to the boundary length F,. This implies that the
transport is limited by the transfer though cell membranes.
The link between sub-cellular and macroscopic scales is
established through the Eq. (9), since the x field is global for
the whole tissue. After a cell divides, the daughter cells
inherit the phase of the circadian rhythm of the parent cell.
The neutral curve for the Hopf bifurcation of (9) within
the deterministic approach at a single- cell level was de-
rived in [9]. The numerical study reveals the oscillatory
dynamics above the bifurcation as it is shown in Fig. 6b.
In order to study the spatial effects within the determin-
istic description, the set of delay differential equations (9)
has been solved using the explicit Euler method, whose
stability was warranted by a sufficiently small time step.
This procedure was synchronized with the simulation of
the mechanical evolution governed by Egs. (1)—(5). The
initial configuration of the system is a hexagonal lattice
comprising 1560 cells with random phase distribution. The
tissue as a whole has the form of a stripe. Figure 6a presents
the results of numerical simulation of the X protein pattern
with parameters taken above the Hopf bifurcation. The non-
linear dynamics includes the slow development of spiral

traveling wave pattern which arises against the synchro-
nized field oscillating in the background. The oscillation
period is approximately equal to the triple delay time.

2.6. Genetic model of circadian rhythms: stochastic
description

The small number of reactant molecules involved in the
gene regulation can lead to significant fluctuations in pro-
tein concentrations. Since the pioneering works published
in the early 2000s, there have been numerous studies deal-
ing with the influence of such noise at the regulatory level
[7]. A review of recent developments in the field can be
found in [27]. Additional point to emphasize is that the tran-
scription-translation processes are compound multistage
reactions involving the sequential assembly of long mol-
ecules. This may result in a time lag in gene regulation pro-
cesses. When the delays are short compared with other
characteristic time scales of the system, one can safely ig-
nore them in simulations. However, if the lags become longer
than other processes, the system has to be considered as
non-Markovian, and one should account for this in both
deterministic and stochastic descriptions. The joint effect
of the intrinsic noise and time delay on the temporal
behaviour during gene regulation have been studied first in
[9, 10]. In [9] we have suggested a generalization of the
Gillespie algorithm [8] widely used to simulate statistically
correct trajectories of the state of a chemical reaction net-
work that accounts for delay. Based on this technique, we
have shown that quasi-regular fluctuations can arise in the
stochastic system with delay even when its deterministic
counterpart exhibits no oscillations [10]. Lately a large num-
ber of works have been published developing this research
line (see a recent review [28]), mainly focusing on further
improving the algorithm and on studying the temporal dy-
namics of gene systems with delays.

In [29] it was stated that “space is the final frontier in
stochastic simulations of biological systems”. The problem
is that despite the considerable body of spatio-temporal
experimental data has been accumulated, the stochastic
models of biochemical processes focus mostly on temporal
dynamics. If in the past years considerable progress has
been made in spatial stochastic simulations of Markovian
processes [27, 29], however the studies of non-Markovian
stochastic systems are still very rare. The theoretical diffi-
culties seem to be clear: the generalization of the Gillespie
algorithm to the case of the spatial dynamics of time-de-
layed processes is still waiting for solution. In order to de-
scribe the spatial stochastic effects, here we use a hybrid
model, which is constructed as follows. The dynamics of
the proteins in each cell has been obtained by performing
direct stochastic simulations of the reactions (6-8) using
the modified version of the Gillespie algorithm [9]. The sig-
naling between cells is still organized as diffusive transport
of the X monomers from one cell to the other according to
finite-difference formula:
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XM =X +G(X, X+

+ ALY aly (X, X)) |, (10)
Jeadj(i)
where [...] stands for the integer part of the expression and
G denotes the generalized Gillespie algorithm. The time step
in (10) is equal to the time step for the integration of the
mechanics of the system (1)—(5): At=0.05. Since the typical
time step of the stochastic system is much less, one needs
to dock the numerical schemes for the tissue mechanics
and stochastic dynamics of the protein.
Figure 6b presents the stochastic pattern formed by the
X monomers in the tissue with the same parameter values as
in Fig. 6a. We found that nonlinear dynamics of spatially
extended system consists of two distinct oscillatory modes,
just like it was in the deterministic case. One is a quasi-
standing wave pattern oscillating with the period equal to
the triple delay time. The second oscillatory mode consists
of traveling waves which arise from selected initial distur-
bances. In fact, the stochastic pattern looks very similar to
its deterministic counterpart obtained for the same param-
eters (compare the frames in Fig. 6). The wavelength of the
structure is found to depend on the copy number N of
signaling whose growth enhances fluctuations and diffu-
sive fluxes between cells.

2.7. Transformation of cells

As mentioned above, the main circadian genes appear
to strongly influence tumorogenesis. The rhythmicity dem-
onstrated in the expression of clock-controlled genes regu-
lates various functions of cells, including their division and
proliferation. Resynchronization of this rhythmicity can be
involved in some pathologies, including the development
of tumours. There is increasing evidence linking malfunc-
tion of the bioclock work with pathogenesis of cancer [20,
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21]. Inareview paper [30], a large number of examples of the
connection between circadian genes, circadian periodicity,
aging-related phenotypes, and cancer are given. An impor-
tant result obtained experimentally was reported in [31].
The authors have checked whether the circadian rhythm
was connected to the cell-cycle oscillation in immortalized
rat-1 fibroblasts by observing cell-cycle gene promoter-
driven luciferase activity. It was revealed that there was no
direct phase relationship between the circadian and cell
rhythms. These data imply that the circadian system does
not govern the cell-mitosis thythm in rat- 1 fibroblasts. Thus,
it was suggested that there is no direct coupling between
the circadian rhythm and cell cycle but the timing of cell
mitosis is synchronized with the rhythmic host environ-
ment. Based on these and other studies, the main idea of
the alteration mechanism is a synchronization failure of a
local oscillation phase in the common field of spatially
synchronised circadian rhythms in the epithelial tissue.

Preliminary numerical simulations of the spatially ex-
tended problem (1)—(5) with the circadian model (6)—(8) have
shown that when the number of cells is large enough, a
complete synchronisation, i.e. the total alignment of the
oscillation phases in all cells, cannot be achieved when the
coupling is small. Instead, the cells are organised in collec-
tive spatio-temporal patterns including clusters of cells os-
cillating with almost the same phase. The thin layer of cells
between clusters exhibit oscillations with intermediate phase.
Thus, we introduce a new variable which characterises the
local dephasing defined as the phase difference of the cir-
cadian rhythm of an ith cell and the average phase of the
adjacent cells:

| xo %o |
q)i(t)_<|maX(Xi) max(Xk)| keadj(i)’ "

where phase values are normalized by its maximal value. If

20 0 20

Fig. 6. X protein pattern in the epithelium formed of 1560 cells within (a) deterministic and (b) stochastic description, with
parameters 4 = 5000 nM/h, B=35.0 1/h,6=8 h, N=1,{=0.05 L/h, k+a=200 1/nMh, k-a= 1000 1/h, k+1=100 1/nMh, k1=1000

1/h. Both frames correspond to time 340 h
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the ith cell is in a fully synchronised field, the value of ®;,
obviously, will be zero. On the other hand, the dephasing
(11) increases near the boundary of the clusters. The maxi-
mum value of the dephasing would occur in case of an
isolated cell within a phase cluster. According to our hy-
pothesis, this cell is most at risk to become a cancer cell.
Apparently, in a dynamically changing pattern where clus-
ter boundaries are varying in time, the cell transformation
should occur much less frequently.

Then we can introduce the phenomenological state equa-
tion for the ith cell [13, 16]:

42,0 _ 12

L= A2 00 -ZO)C-Zi1) + a® (), (1)
where Z is the state function, A is the damping parameter,
&(?) is an uncorrelated zero mean noise input in the range
[-1; 1], a is the amplitude of the noise, assumed to be mul-
tiplicative. Without noise, Eq. (12) has two stable station-
ary solutions: Z= 0, standing for the normal state of the cell,
and Z = 1 corresponding to the cancer state. These solu-
tions are separated by an unstable steady state which sepa-
rates their domains of attraction.

Thus, Eq. (12) constitutes the simple bistability model
allowing the cells to transform into cancer state with some
probability depending on the circadian pattern formation
expressing the collective behavior of cells.

3. Numerical results
3.1. State function dynamics

The initial configuration of the system is set to be a
regular hexagonal lattice comprising 1560 healthy cells and
no cancer cells. The shape and location of each cell is de-
fined by its nodes. The tissue as a whole has the form of a
stripe with two free borders with periodic boundary condi-
tions applied there. The typical values of the mechanical
parameters for the normal cells areas follows: p=1.0F/L,
N=10F/L*, 4,=3\3/212, K =1.0L/(hF), F, = 0.02F,
Py= 0.0002, ¢ = 1.4, I, = 0.15, A=101/h, { = 0.15,
o.=0.11/(hL). Here spatial dimensions and force are mea-
sured in terms of arbitrary units L and F respectively.

The set of differential equations describing the dynam-
ics of mechanical subsystem (1)—(5), the circadian rhythms
and signaling (6)—(8) (depending on the description (9) or
(10)) and the state function dynamics (11)—(12) has been
solved using the explicit Euler method, whose stability was
warranted by a sufficiently small time step Az=0.005. The
time step for the calculation of the molecular processes in
cells was synchronised with the step of calculating the
mechanical movement of the tissue cells. We take as the
initial condition a random phase distribution. In the pro-
cess of evolution, the rthythms in cells try to synchronise
through a weak nonlinear interaction, generating the vari-
ous spatio-temporal patterns. From the perspective of biol-
ogy, an arbitrary distribution of phases in cells taken as the
initial conditions looks artificial, since synchronisation of

Fig. 7. X protein concentration (a), dephasing @ (b) and
state function Z (c) in the epithelium composed of 1560 cells
calculated within deterministic description at #=350 h. Sys-
tem evolution starts from random phase distribution.

rhythms happens at the stage of embryonic development.
Nevertheless, the numerical study with random initial con-
ditions allows us to better understand the self- organisation
properties of the system and to evaluate the mechanisms of
pattern formation.
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The typical values of the parameters governing the cir-
cadian rhythms in each cell are as shown in Fig. 6. The next
Figure 7 presents the results of numerical simulation of the
temporal evolution of the system within the deterministic
description. The patterns of the concentration x, the
dephasing and the state function Z are shown for the time
moment 350 h. We have found that the spatial dynamics
includes the slow development of quasi-standing waves
which arise against the mean field oscillating with the basic
period 27 h (Fig. 7a). The dephasing calculated according
to (11), (12) reaches a maximum value on the boundary of
the standing waves domain (Fig. 7b). The cells that fall into
this region, are at high risk to transform into cancerous
state. Figure 7c confirms this conclusion: most of the trans-
formed cells are grouped in a zone of uncertain oscillation
phase characterized by the maximal dephasing. The impor-
tant point is the small mobility of the pattern shown in the
figure. Since the boundary of the standing waves change
slowly, the same cells are always at risk of the transforma-
tion. Note that the parameter values for the transformation
model (12) have been calibrated so that the number of trans-
formed cells was sufficient to demonstrate the effect.

3.2. Tumor development

Figure 8 gives the example of the numerical simulation
of a invasive tumour. The parametersdefining the proper-
ties of cancer cells are 4, = 3x/§/2L2, uw=12F/L,m=
=1.0F / L, Iy = 0.4. In order to focus upon the develop-
ment of the tumour, the alteration process has been stopped
during the simulation run just after the first cell turned into
a cancer cell. This moment of time was fixed at /=0 h. One
can see that the size and shape of the cells becoming can-
cerous differ from those of the normal members of the com-
munity. Cancer cells are approximately twice as small and
irregular in shape. The healthy cells that border on cancer
cells experience a significant stress: they are squeezed and

shrunk under the onslaught of cancer cells. Since the pe-
riod of the division of cancer cells is shorter, the tumour
evolves rapidly, increasing the occupied area. The forced
proliferation of cancer cells is the reason why in the bulk of
tumour the cells are also strongly squeezed and may be-
come irregularly shaped. One can notice that the threshold
of intercalation [0 for cancer cells has been sharply increased
in comparison with the normal cells. This condition allows
to reduce a high level of potential energy in cells by restruc-
turing their form due to the intercalation process. The char-
acteristic rate of cell intercalation exceeds here the division
frequency, and the front between the tumour and the healthy
tissue becomes unstable. Because of the easy intercala-
tion, active proliferation and relatively small size, the cancer
cells actively change their location, move apart and migrate
through the healthy tissue. Thus, this simulation models a
key property of the invasive type of cancer being capable
to penetrate into various tissues and organs. The instabil-
ity of the front between normal and cancer cells, clearly
visible in Fig. 8, looks similar to a fingering instability at the
interface of two immiscible fluids when a fluid with a lower
viscosity is pushed into a fluid of higher viscosity. Although
tissue is neither a liquid nor a granular medium, and cannot
be characterized as either miscible or immiscible, the anal-
ogy is natural, as the effective viscosity of the tumor is
lowered by easy intercalation, while the driving pressure is
generated by division of cancerous cells.

4. Conclusions

Cancer formation is a complex biophysical process, and
its modelling requires a multiscale mathematical approach.
In present review a minimal multiscale chemo-mechanical
model which includes three natural scales of the tumor for-
mation was proposed. Processes on the mesoscopic (cellu-
lar) scale are activated by circadian rhythm signals gener-
ated on the microscopic (subcellular) scale, and exert an
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Fig. 8. Numerical simulation of an invasive cancer tumor development in epithelial tissue: (a) — relative cell size with respect
to the average size of a normal cell; (b) — state function Z where Z=1 and Z=0 stand for cancer and normal cells, respectively.

The frames correspond to time 80 h.
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influence over cooperative phenomena occurring at the
macroscopic level characterised by a long-range coordina-
tion of cells. The medium where the tumour grows and
spreads is modelled taking into account both transport of
signaling species and mechanical interactions between the
cells. In addition to detailed description of the model nu-
merical results including simulation of tumor development
are presented. It is worth noting that many mechanisms
underlying tumor development currently remain unknown.
Still, our model is designed in such a way that any newly
discovered molecular mechanism can be easily integrated
into it by using simple phenomenological relations. The
model can be generalized to the case when epithelial cells
cover a curved surface. Such situation is the most realistic
one, because of the complex topology of epithelial tissue.
Finally, the model can also be generalized to an arbitrary
three-dimensional tissue. The number of epithelial cells that
can simultaneously participate in tissue evolution is only
limited only by the capacity of the computer.
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